Easy and inexpensive methodology for 3D printing of drug-releasing osteoinductive scaffolds
نویسندگان
چکیده
منابع مشابه
Laser printing of cells into 3D scaffolds.
One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and ...
متن کاملA Review of the Recent Advances and Application of 3D Printing in Pharmacy and Drug Delivery
Throughout human history, the most valuable inventions have been those that, even decades after their initial introduction, affected the lives of people around the world. 3D printers similar to steam engines, light bulbs, and the World Wide Web are thought to be among the inventions that will revolutionize the future of different industries. This technology is generally introduced as the manuf...
متن کاملStreamlined, Inexpensive 3D Printing of the Brain and Skull
Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop ...
متن کامل3D printing scaffolds with hydrogel materials for biomedical applications
3D printing has now been recognized as a very practical technique to create 3D structures with milli-/micron-scale resolution. In tissue engineering, particularly, people utilize 3D printing technique to integrate biodegradable polymers to tissue scaffolds. Hydrogel is highly potential material that provides aqua environment and enables nutrition and oxygen transportation, all of which are requ...
متن کاملHydroxyapatite scaffolds for bone tissue engineering made by 3D printing.
Nowadays, there is a significant need for synthetic bone replacement materials used in bone tissue engineering (BTE). Rapid prototyping and especially 3D printing is a suitable technique to create custom implants based on medical data sets. 3D printing allows to fabricate scaffolds based on Hydroxyapatite with complex internal structures and high resolution. To determine the in vitro behaviour ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2016
ISSN: 2296-4185
DOI: 10.3389/conf.fbioe.2016.01.02568